Esercizi e problemi sull'ellisse

indice

1.	Determinare l'equazione dell'ellisse note alcune condizioni	<u>pag. 2</u>
2.	Determinare la posizione di una retta rispetto all'ellisse	<u>pag. 5</u>
3.	Determinare le equazioni delle rette tangenti ad una ellisse	<u>pag. 5</u>
4.	Problemi relativi a rette tangenti ad una ellisse	pag. 6
5.	Problemi relativi a rette tangenti ad una ellisse più impegnativi	<u>pag. 7</u>
6.	Esercizi su ellissi traslate	<u>pag. 9</u>
7.	Problemi relativi a ellissi traslate	pag. 12
8.	Problemi sui fasci di ellissi	pag. 13
9.	Problemi di riepilogo	pag. 15
10.	Problemi di riepilogo più impegnativi	pag. 22
11.	Esercizi tabulari	pag. 24

Gli esercizi ed i problemi sono proposti in ordine di difficoltà crescente.

nota: in un file così lungo e complesso può accadere che sia presente un errore di diversa natura nonostante gli esercizi siano stati controllati più volte. Saremo grati di ricevere segnalazioni di eventuali refusi o suggerimenti di qualsiasi natura.

	scrivere l'equazione di un'ellisse note le seguenti co	ndizioni 🗘
1	$a = 3 \qquad b = \sqrt{2}$	$\frac{x^2}{9} + \frac{y^2}{2} = 1$
2	$a = \frac{\sqrt{3}}{2} b = 1$	$\frac{4x^2}{3} + y^2 = 1$
3	$b = 3 \qquad c = 7 (a > b)$	$\frac{x^2}{58} + \frac{y^2}{9} = 1$
4	a = 12 $c = 11$ $(b > a)$	$\frac{x^2}{144} + \frac{y^2}{265} = 1$
	problemi in cui si chiede di determinare l'equazione di	un'ellisse
5	Determinare l'equazione del luogo geometrico dei punti del piano tali che la somma delle distanze dai due punti fissi $P(0; -3)$ e $Q(0; 3)$ è uguale a 10	$\frac{x^2}{25} + \frac{y^2}{34} = 1$
6	Scrivere in forma canonica l'equazione dell'ellisse $4x^2 + 9y^2 = 36$	$\frac{x^2}{9} + \frac{y^2}{4} = 1$
7	Trovare l'equazione dell'ellisse passante per i punti $P(4;-2)$ e $Q(-1;5)$	$7x^2 + 5y^2 = 132$
8	Determinare l'equazione dell'ellisse passante per i punti $\left(2\sqrt{3}; \frac{3}{2}\right)$ e (4; 0)	$\frac{x^2}{16} + \frac{y^2}{9} = 1$
9	Trovare l'equazione dell'ellisse passante per i punti $\left(\sqrt{3}; \frac{1}{2}\right)$ e $\left(0; 1\right)$	$\frac{x^2}{4} + y^2 = 1$
10	Determinare l'equazione dell'ellisse che incontra l'asse delle ascisse nel punto $A\left(\frac{3}{4};0\right)$ e l'asse delle ordinate in $B\left(0;\frac{9}{5}\right)$	$\frac{16x^2}{9} + \frac{25y^2}{81} = 1$
11	Trovare l'equazione dell'ellisse avente fuoco nel punto $F_1(3;0)$ e passante per $Q\left(3;\frac{9}{2}\right)$	$\frac{x^2}{36} + \frac{y^2}{27} = 1$

12	Trovare l'equazione dell'ellisse avente i fuochi $F_1(-2;0)$ ed $F_2(2;0)$ e passante per A $\left(\frac{5\sqrt{2}}{4};\frac{3\sqrt{2}}{4}\right)$	$\frac{4}{25}x^2 + \frac{4}{9}y^2 = 1$
13	Determinare l'equazione dell'ellisse con un fuoco nel punto $F\left(0;-\frac{1}{7}\right)$	$\frac{x^2}{4} + \frac{49y^2}{197} = 1$
14	Trovare l'equazione dell'ellisse avente i fuochi $F_1(0; 1)$ ed $F_2(0; -1)$ e passante per $A\left(\frac{\sqrt{15}}{4}; \frac{3}{4}\right)$	$\frac{4}{5}x^2 + \frac{4}{9}y^2 = 1$
15	Determinare l'equazione dell'ellisse avente il semiasse maggiore a di lunghezza 6 e passante per il punto $P\left(1;\frac{1}{2}\right)$	$\frac{x^2}{36} + \frac{35y^2}{9} = 1$ $\frac{143}{144}x^2 + \frac{y^2}{36} = 1$
16	Determinare l'equazione dell'ellisse con gli assi $a=b=\frac{5}{3}$. Descrivere le caratteristiche della curva che si ottiene	$x^{2} + y^{2} = \frac{25}{9}$ circonferenza di centro 0 di raggio $\frac{5}{3}$
17	Trovare l'equazione dell'ellisse che ha il semiasse focale lungo $2\sqrt{3}$ ed eccentricità pari a $\frac{\sqrt{3}}{2}$	$\frac{x^2}{4} + \frac{y^2}{16} = 1$
18	Determinare l'equazione dell'ellisse con fuochi sull'asse x che sugli assi cartesiani individua due corde di lunghezza $6\sqrt{2}$ e 6	$\frac{x^2}{18} + \frac{y^2}{9} = 1$
19	Trovare l'equazione dell'ellisse che abbia asse focale (sull'asse delle ascisse) pari a 8 ed eccentricità pari a $\frac{4}{5}$	$\frac{x^2}{25} + \frac{y^2}{9} = 1$
20	Determinare l'equazione dell'ellisse passante per il punto (0; 1) e tangente alla retta $y=-\frac{\sqrt{3}}{2}x+\frac{\sqrt{5}}{2}$	$3x^2 + y^2 = 1$

Trovare l'equazione dell'ellisse sapendo che la retta di equazione $2y - 3x - 6 = 0$ passa per un suo fuoco sull'asse x e per un suo vertice sull'asse y Determinare l'equazione dell'ellisse avente eccentricità pari ad $\frac{1}{4}$ e semiasse maggiore uguale a 2	$\frac{x^2}{13} + \frac{y^2}{9} = 1$ $\frac{x^2}{4} + \frac{4}{15}y^2 = 1$
•	$\frac{x^2}{4} + \frac{4}{15}y^2 = 1$
- L	
Determinare l'equazione di un'ellisse avente la somma dei semiassi uguale a 10 e la semi distanza focale uguale a 5	$\frac{16}{625}x^2 + \frac{16}{225}y^2 = 1$
Determinare l'equazione di un'ellisse che ha i fuochi sull'asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 4	$\frac{x^2}{36} + \frac{y^2}{32} = 1$
Determinare l'equazione dell'ellisse con i fuochi sull'asse y sapendo che la somma dei semiassi è 11 e la distanza focale è $2\sqrt{77}$	$\frac{x^2}{4} + \frac{y^2}{81} = 1$
Determinare l'equazione dell'ellisse con i fuochi sull'asse delle ordinate sapendo che la somma degli assi è $24 + 8\sqrt{5}$ e che un vertice ha coordinate $(0; -12)$	$\frac{x^2}{80} + \frac{y^2}{144} = 1$
Determinare l'equazione dell'ellisse con i fuochi sull'asse delle ascisse sapendo che la somma degli assi è 16 e che l'eccentricità vale $\frac{2\sqrt{2}}{3}$	$\frac{x^2}{36} + \frac{y^2}{4} = 1$
Determinare l'equazione dell'ellisse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, di eccentricità $e = \frac{\sqrt{5}}{5}$ e avente il semiasse minore $a = 4$	$\frac{x^2}{16} + \frac{y^2}{20} = 1$
Determinare l'equazione dell'ellisse con i fuochi sull'asse x , centro nell'origine degli assi e passante per il punto $P\left(3; \frac{12}{5}\right)$ sapendo che la distanza focale è 8	$\frac{x^2}{25} + \frac{y^2}{9} = 1$

Geometria Analitica

determinare se la retta e l'ellisse sono secanti, tangenti o esterne, individuando eventuali intersezioni

det	erminare se la retta e l'ellisse sono seca	nti, tangenti o esterne, individu	uando eventuali intersezioni
30	$\frac{(x-3)^2}{36} + \frac{5}{16} \left(y - \frac{1}{2} \right)^2 = 1$	$\frac{4x}{3} + 10y = 1$	secanti $A\left(7; -\frac{5}{6}\right) B\left(-3; \frac{1}{2}\right)$
31	$63\left(x - \frac{1}{3}\right)^2 + \left(y - \frac{1}{10}\right)^2 = 16$	$7x + \frac{y}{3} = \frac{57}{10}$	$A\left(\frac{5}{6}; -\frac{2}{5}\right) B\left(\frac{2}{3}; \frac{31}{10}\right)$
32	$\left(x - \frac{3}{5}\right)^2 + 4\left(y + \frac{7}{5}\right)^2 = \frac{40}{9}$	$x + 6y = -\frac{17}{15}$	tangenti $T\left(\frac{19}{15}; -\frac{2}{5}\right)$
33	$\frac{4}{49}x^2 + \left(y - \frac{3}{2}\right)^2 = \frac{1}{25}$	4x - 5y = 1	esterne
34	$25x^2 + 91\left(y - \frac{8}{3}\right)^2 = 25$	$x + \frac{71}{15} = \frac{7y}{5}$	$A\left(-1;\frac{8}{3}\right) B\left(-\frac{3}{10};\frac{19}{6}\right)$
35	$16\left(x + \frac{5}{3}\right)^2 + 75\left(y + \frac{3}{2}\right)^2 = 57$	$x + 5y = -\frac{53}{12}$	$tangenti$ $T\left(-\frac{11}{12}; -\frac{7}{10}\right)$
36	$\int_{16}^{45} \left(x - \frac{1}{2}\right)^2 + y^2 + 2y = 0$	$5x - \frac{4}{3}y = \frac{5}{2}$	$A\left(\frac{1}{18}; -\frac{5}{3}\right) B\left(\frac{1}{2}; 0\right)$
37	$\frac{2}{25}\left(x-\frac{2}{3}\right)^2 + \frac{1}{81}\left(y+\frac{1}{4}\right)^2 = \frac{1}{16}$	$3x + \frac{5y}{6} = \frac{11}{3}$	secanti $A\left(\frac{3}{2};-1\right) B\left(\frac{2}{3};2\right)$
38	$18\left(x - \frac{1}{2}\right)^2 + 25\left(y - \frac{3}{2}\right)^2 = 27$	$6x + 25y = \frac{27}{2}$	$tangenti$ $T\left(\frac{1}{6}; \frac{1}{2}\right)$

determinare le tangenti all'ellisse passanti per il punto P e i punti di tangenza

	dere mindre le rangemi un'emisse passami per il punto i e i punti di tangenza		
39	$7x^2 + 17y^2 = 768$	$P\left(-12; -\frac{36}{17}\right)$	49x + 85y = -768 A(-7; -5) $35x - 17y = -384 B(-10; 2)$
40	$3x^2 + y^2 = 28$	P(-2; -4)	3x + 2y + 14 = 0
41	$x^2 + 3y^2 = 28$	$P\left(-\frac{14}{5}; -\frac{14}{5}\right)$	2x + 3y = -14 A(-4; -2) $x + 9y = -28 B(-1; -3)$
42	$2x^2 + 3y^2 = 125$	$P\left(\frac{25}{4}; -\frac{25}{6}\right)$	2x - 3y = 25 A(5; -5) $14x - 9y = 125 B(7; -3)$

43	$7x^2 + 8y^2 = 575$	$P\left(\frac{23}{3};\frac{23}{2}\right)$	63x + 8y = 575 A(9; 1) $64y - 21x = 575 B(-3; 8)$
44	$\frac{x^2}{6} + \frac{y^2}{3} = 9$	P(-6; -3)	x + y + 9 = 0
	р	roblemi relativi a rette tangenti ad un'elliss	e 1

Scrivere le equazioni delle tangenti condotte dal punto
$$P(0; 2)$$
 all'ellisse di equazione $x^2 + 4y^2 = 4$

$$y - \frac{1}{2}x + 2$$
$$y = -\frac{\sqrt{3}}{2}x + 2$$

Scrivere le equazioni delle rette tangenti all'ellisse
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
 parallele alla retta di equazione $y = x - 1$

$$y = x \pm \sqrt{34}$$

Data l'ellisse di equazione
$$\frac{x^2}{9} + \frac{2y^2}{9} = 1$$
 ed il punto $P(9;0)$ scrivere le equazioni delle rette tangenti condotte dal punto all'ellisse

$$y = \pm \frac{1}{4}(x - 9)$$

Scrivere l'equazione della tangente all'ellisse di equazione
$$\frac{x^2}{9} + y^2 = 1 \text{ nel punto in cui questa interseca la retta}$$
$$x = -2 \text{ nel terzo quadrante}$$

$$2x + 3\sqrt{5}y - 3 = 0$$

Data l'ellisse di equazione
$$\frac{x^2}{121} + \frac{9y^2}{4} = 1$$
 determinare la tangente nel vertice positivo dell'asse x . Determinare inoltre l'area del triangolo che si forma tra la tangente e la secante all'ellisse passante per altri due vertici

$$x = 11$$

$$area = \frac{44}{3}$$

Tramite la formula dello sdoppiamento trovare la tangente all'ellisse di equazione
$$\frac{9}{64}x^2 + \frac{y^2}{36} = 1$$
 nel suo punto di ascissa $x = 0$ e ordinata negativa

$$y = -6$$

51	Determinare le equazioni delle rette passanti per il punto $Q(1;2)$ e tangente all'ellisse $x^2+4y^2-4=0$	$y = \frac{-2 \pm \sqrt{13}}{3}(x - 1) + 2$
52	Scrivere l'equazione della tangente all'ellisse $x^2 + 25y^2 = 36$ nel suo punto di ascissa 5 e ordinata negativa. Calcolare poi l'area del triangolo che si ottiene dall'intersezione di questa retta con gli assi cartesiani	$5x - 5\sqrt{11}y = 36$ $area = \frac{648}{25\sqrt{11}}$
53	Considerata l'ellisse $9x^2 + by^2 - 108x - 6y = 0$ determinare b in modo che la curva sia tangente alla retta $x - 3y + 5 = 0$	$b = \frac{623}{17}$
54	Determinare l'equazione dell'ellisse tangente alla retta $y=\frac{x-20}{6}$, passante per il punto $P\left(1;-\frac{\sqrt{39}}{2}\right)$ e un vertice nel punto $Q\left(2\sqrt{10};0\right)$	$\frac{x^2}{40} + \frac{y^2}{10} = 1$
	problemi relativi a rette tangenti ad un'ellisse più im	pegnativi 👚 👚
55	Data l'ellisse di equazione $\frac{x^2}{12} + \frac{y^2}{4} = 1$ e il fascio di rette di equazione $y = mx - 4$, determina i valori del parametro m che corrispondono a rette che: a) intersecano l'ellisse in due punti distinti b) sono tangenti all'ellisse c) sono esterne all'ellisse	a) $m < -1 \forall m > 1$ b) $m = \pm 1$ c) $-1 < m < 1$
56	Date l'ellisse di equazione $4x^2 + y^2 = 4$ e la retta r che stacca sugli assi x ed y due segmenti che, in valore e segno, misurano rispettivamente 8 e -3 , determina le equazioni delle tangenti all'ellisse perpendicolari a r	$8x + 3y \pm 10 = 0$

57	Sull'ellisse $\frac{x^2}{18} + \frac{y^2}{8} = 1$, determina il punto P più vicino alla retta $2x - 3y + 25 = 0$ e calcola la distanza d tra P e questa retta	$P(-3;2)$ $d = \sqrt{13}$
58	Dopo aver scritto l'equazione dell'ellisse che passa per $P\left(1;\frac{4}{3}\right)$ e $Q\left(2;-\frac{\sqrt{10}}{3}\right)$, individua nel fascio di centro P, la retta ad essa tangente. Calcola poi l'area del triangolo che tale tangente forma con gli assi cartesiani	$x + 6y - 9 = 0$ $area = \frac{27}{4}$
59	Trova le tangenti all'ellisse di equazione $x^2 + 4y^2 = 9$ che passano per il punto $A(9;0)$. Indicati con B e C i punti di tangenza, trova l'area del triangolo ABC	$x \pm 4\sqrt{2}y - 9 = 0$ $area = 8\sqrt{2}$
60	Condurre le tangenti all'ellisse di equazione $4x^2 + 9y^2 = 144$ che passano per i punti $A(9;0)$ e $B(-9;0)$ e calcola l'area e il perimetro del rettangolo che ha come vertici i quattro punti di tangenza	$4x \pm 3\sqrt{5}y = 36$ $4x \pm 3\sqrt{5}y = -36$ $area = \frac{64\sqrt{5}}{3}$ $2p = 16 + \frac{16\sqrt{5}}{3}$
61	Dopo aver scritto l'equazione dell'ellisse che passa per $P\left(\sqrt{14}; \sqrt{\frac{3}{5}}\right)$ e che è tangente alla retta t di equazione $y=3$, considera le rette r e s del fascio di centro $(0;-4)$ che sono tangenti a tale ellisse. Calcola l'area del triangolo individuato dalle rette r , s e t	$\frac{x^2}{15} + \frac{y^2}{9} = 1$ $area = 7\sqrt{105}$

trovare l'equazione dell'ellisse ottenuta traslando quella data tramite il vettore $\,v\,$

$$62 \quad \frac{x^2}{12} + \frac{y^2}{2} = 1$$

$$\boldsymbol{v} = \left(-\frac{8}{3}; 2\right)$$

$$\frac{x^2}{12} + \frac{y^2}{2} + \frac{4}{9}x - 2y + \frac{43}{27} = 0$$

$$63 \quad \frac{36}{7}x^2 + \frac{y^2}{4} = 1$$

$$v = (0; -6)$$

$$\frac{36}{7}x^2 + \frac{y^2}{4} + 3y + 8 = 0$$

$$64 \left| \frac{x^2}{2} + 13 y^2 = 1 \right|$$

$$\boldsymbol{v} = (5; -1)$$

$$\frac{x^2}{2} + 13y^2 - 5x + 26y + \frac{49}{2} = 0$$

$$^{65} \left| \frac{x^2}{2} + \frac{y^2}{6} \right| = 1$$

$$v = \left(\frac{1}{3}; -6\right)$$

$$\frac{x^2}{2} + \frac{y^2}{6} - \frac{x}{3} + 2y + \frac{91}{18} = 0$$

$$|x^2 + y^2| = 1$$

$$\boldsymbol{v} = (8; \sqrt{11})$$

$$x^2 + y^2 - 16x - 2\sqrt{11}y + 74 = 0$$

$$^{67} \left| \frac{49}{8} x^2 + \frac{y^2}{36} \right| = 1$$

$$\boldsymbol{v} = \left(-\frac{9\sqrt{2}}{7}; -6\right)$$

$$\frac{49}{8}x^2 + \frac{y^2}{36} + \frac{63\sqrt{2}}{4}x + \frac{y}{3} + \frac{81}{4} = 0$$

$$68 \left| \frac{x^2}{4} + y^2 \right| = 1$$

$$\boldsymbol{v} = \left(-\frac{5}{2}; -\frac{3\sqrt{2}}{2}\right)$$

$$\frac{x^2}{4} + y^2 + \frac{5}{4}x + 3\sqrt{2}y + \frac{81}{16} = 0$$

$$|x^2 + \frac{y^2}{4} = 1$$

$$v = \left(-2\sqrt{5}; \frac{2\sqrt{15}}{3}\right)$$

$$x^2 + \frac{y^2}{4} + 4\sqrt{5}x - \frac{\sqrt{15}}{3}y + \frac{62}{3} = 0$$

$$70 \quad 24 \ x^2 + 3y^2 = 1$$

$$\mathbf{v} = \left(0; \frac{5}{\sqrt{3}}\right)$$

$$24 x^2 + 3y^2 - 10\sqrt{3}y + 24 = 0$$

$$^{71} \left| \frac{16}{9} x^2 + \frac{y^2}{2} \right| = 1$$

$$v = \left(\frac{3\sqrt{5}}{7}; -\frac{9\sqrt{2}}{7}\right)$$

$$\frac{16}{9}x^2 + \frac{y^2}{2} - \frac{32\sqrt{5}}{21}x + \frac{9\sqrt{2}}{7}y + \frac{16}{7} = 0$$

$$\frac{5}{6}x^2 + \frac{5}{12}y^2 = 1$$

$$\boldsymbol{v} = \left(\frac{2}{\sqrt{5}}; \sqrt{19}\right)$$

$$\frac{5}{6}x^2 + \frac{5}{12}y^2 - \frac{2\sqrt{5}}{3}x - \frac{5\sqrt{19}}{6}y + \frac{91}{12} = 0$$

$$\frac{x^2}{3} + \frac{15}{8}y^2 = 1$$

$$v = \left(-4; \frac{\sqrt{2}}{3}\right)$$

$$\frac{x^2}{3} + \frac{15}{8}y^2 + \frac{8}{3}x - \frac{5\sqrt{2}}{4}y + \frac{19}{4} = 0$$

$$|x^2 + 9y^2 = 4|$$

$$\boldsymbol{v} = \left(-\sqrt{15}; \frac{2\sqrt{5}}{3}\right)$$

$$\frac{x^2}{4} + \frac{9}{4}y^2 + \sqrt{15}\left(\frac{x}{2} - \sqrt{3}y\right) + \frac{31}{4} = 0$$

$$\frac{x^{2}}{6} + \frac{9}{7}y^{2} = 1 \qquad \mathbf{v} = \left(-\sqrt{11}; -\frac{8\sqrt{6}}{9}\right) \qquad \frac{x^{2}}{6} + \frac{9}{7}y^{2} + \frac{\sqrt{11}}{3}x + \frac{16\sqrt{6}}{7}y + \frac{97}{14} = 0$$

$$\frac{4}{25}x^{2} + \frac{y^{2}}{144} = 1 \qquad \mathbf{v} = \left(\sqrt{\frac{63}{8}}; \frac{3\sqrt{11}}{5}\right) \qquad \frac{4}{25}x^{2} + \frac{y^{2}}{144} - \frac{6\sqrt{14}}{25}x - \frac{\sqrt{11}}{120}y + \frac{23}{80} = 0$$

Trovare il vettore
$$v$$
 e l'equazione dell'ellisse ottenuta traslando quella data in modo che il suo centro coincida con l'origine $\frac{17}{16}x^2 + \frac{5}{2}y^2 + \frac{17}{4}x + 2\sqrt{2}y + \frac{81}{20} = 0$ $v = \left(2; \frac{2\sqrt{2}}{5}\right)$ $\frac{17}{16}x^2 + \frac{5}{2}y^2 = 1$ $v = \left(2; \frac{2\sqrt{2}}{5}\right)$ $v = \left(6; -2\sqrt{3}\right)$ $v = \left(7; -2\sqrt{3}\right)$ $v = \left(7; -2\sqrt{3}\right)$ $v = \left(7; -2\sqrt{3}\right)$ $v = \left(7; -2\sqrt{3}\right)$ $v = \left(7$

88	$x^{2} + 18y^{2} + \frac{\sqrt{3}}{2}x - \frac{9\sqrt{7}}{2}y + \frac{5}{32} = 0$	$v = \left(\frac{\sqrt{3}}{4}; -\frac{\sqrt{7}}{8}\right) \qquad \frac{x^2}{2} + 9y^2 =$
89	$\frac{5}{72}x^2 + \frac{y^2}{18} + \frac{\sqrt{5}}{6}x - \frac{y}{3} - 1 = 0$	$v = \left(\frac{6\sqrt{5}}{5}; -3\right) \qquad \frac{5}{144}x^2 + \frac{y^2}{36} =$
90	$\frac{4}{9}x^2 + \frac{y^2}{4} - \frac{8\sqrt{17}}{9}x + y + \frac{68}{9} = 0$	$v = (-\sqrt{17}; 2) \qquad \frac{4}{9}x^2 + \frac{y^2}{4} =$
91	$\frac{x^2}{49} + 16y^2 + \frac{2\sqrt{5}}{21}x - 8y - \frac{67}{9} = 0$	$v = \left(\frac{7\sqrt{5}}{3}; -\frac{1}{4}\right) \qquad \frac{x^2}{441} + \frac{16}{9}y^2 =$
		anno anti-ditari manalana

determinare i fuochi e l'eccentricità delle seguenti ellissi traslate

$$\frac{3x}{2}\left(1+\frac{x}{2}\right)+\frac{4y}{25}+\frac{3}{4}=0$$

$$e=\frac{\sqrt{209}}{15}$$

95
$$x^2 + y^2 - 4x - 16y + 67 = 0$$
 $F(2;8)$ centro della circonferenza $e = 0$

96 $\frac{x^2 + 6x}{49} + \frac{y^2 - 16y}{81} = \frac{104}{3969}$ $F_1(-3;8 - 4\sqrt{2})$ $F_2(-3;8 + 4\sqrt{2})$ $e = \frac{4\sqrt{2}}{9}$

$$F_1\left(5; -8 - \frac{\sqrt{11}}{6}\right) \quad F_2\left(5; -8 + \frac{\sqrt{11}}{6}\right) \quad F_2\left(5; -8 + \frac{\sqrt{11}}{6}\right) \quad e = \frac{\sqrt{11}}{6}$$

F(2;8) centro della circonferenza

98

problemi in cu	ui si chiede d	li determinare l'	'equazione di e	ellissi traslate
----------------	----------------	-------------------	-----------------	------------------

1

Considerato il grafico a lato,
scrivere l'equazione dell'ellisse
rappresentata ed individuare le
sue caratteristiche principali

$$\frac{(x-3)^2}{9} + y^2 = 1$$

$$C(3;0)$$

$$F_{1,2} = (3 \pm 2\sqrt{2}; 0)$$

$$e = \frac{2\sqrt{2}}{3}$$

Scrivere l'equazione dell'ellisse traslata con il centro sulla retta
$$x=3$$
 che ha un fuoco nel punto $F(3-\sqrt{3};-1)$, un vertice nel punto di intersezione tra la retta $y=2x-6$ e la curva $y=-\frac{1}{3}x^2+3$

$$\frac{(x-3)^2}{4} + (y+1)^2 = 1$$

Determinare l'equazione dell'ellisse traslata (con
$$a < b$$
), che ha un fuoco nel punto $P(7; 13)$, $b = 12$ e distanza focale uguale a 16

$$\frac{(x-7)^2}{80} + \frac{(y-5)^2}{144} = 1$$

Scrivere l'equazione dell'ellisse traslata (con
$$a < b$$
) che ha centro nel punto $P(-3; 1)$, $a = 5$, un fuoco sulla retta $x = -3$ ed eccentricità $e = \frac{1}{3}$

$$\frac{(x+3)^2}{25} + \frac{8(y-1)^2}{225} = 1$$

Determinare l'equazione dell'ellisse traslata in
$$(x_0; y_0)$$
 sapendo che il rapporto tra i semiassi è $\frac{2}{3}$, che la loro somma è 15, che il centro appartiene alla retta $y = x + 1$ e che ha un vertice nel punto $V(7; 2)$

$$\frac{(x-1)^2}{36} + \frac{(y-2)^2}{81} = 1$$

Scrivi l'equazione dell'ellisse ottenuta dall'ellisse di equazione
$$\frac{x^2}{2} + y^2 = 1$$
 mediante la traslazione di vettore \vec{v} (-1;1); scrivi le coordinate dei fuochi dell'ellisse traslata

$$x^{2} + 2y^{2} + 2x - 4y + 1 = 0$$

$$F_{1}(0; 1)$$

$$F_{2}(-2; 1)$$

Scrivi l'equazione dell'ellisse di eccentricità
$$\frac{\sqrt{10}}{4}$$
 che ha centro in $O'(1; -3)$ e che ha i fuochi sulla retta $x = 1$, distanti tra loro $2\sqrt{5}$

$$\frac{(x-1)^2}{3} + \frac{(y+3)^2}{8} = 1$$

	Una traslazione di vettore $\vec{v}\left(a;b ight)$ fa corrispondere
	l'origine del sistema di riferimento al vertice di ascissa
	maggiore dell'ellisse di equazione $\frac{x^2}{25} + \frac{y^2}{4} = 1$.
	Determina le componenti del vettore e l'equazione
	dell'ellisse traslata

$$a = 5$$

$$b = 0$$

$$4x^2 + 25y^2 - 40x = 0$$

Determina l'equazione dell'ellisse che ha gli assi coordinati come assi di simmetria, i fuochi sull'asse delle ascisse, semiasse maggiore uguale a 4 e eccentricità uguale a
$$\frac{2}{3}$$
. Scrivi poi l'equazione dell'ellisse corrispondente alla data in una traslazione di vettore \vec{v} (3; 2)

$$\frac{(x-3)^2}{16} + \frac{9(y-2)^2}{80} = \frac{1}{2}$$

Determina l'equazione dell'ellisse con centro di simmetria nell'origine degli assi coordinati, passante per i punti
$$P(-6;0)$$
 e $Q(0;4)$. Scrivi poi l'equazione della sua trasformata nella traslazione di vettore \vec{v} (1;0). Considerato il punto T di ascissa 4 e ordinata positiva dell'ellisse traslata, scrivi l'equazione della retta ad essa tangente in T

$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$
$$T(4; 2\sqrt{3})$$
$$2x + 3\sqrt{3}y - 26 = 0$$

problemi sui fasci di ellissi

Scrivere l'equazione del fascio di ellissi con un fuoco nel punto
$$F(-3;0)$$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - 9} = 1$$

$$con \ a \in R - \{0; +3\}$$

Determinare l'equazione del fascio di ellissi tale che l'asse maggiore
$$2a$$
 sia sempre un multiplo di 5, e il semiasse minore b sia uguale a 3

$$\frac{4x^2}{25k^2} + \frac{y^2}{9} = 1$$

106

107

110

111

112

Considerato il	faccio d	i allicci	doccritto	dall'aguaziona
Lonsiderato ii	iastiu u	1 6111221	uescritto	uali Euuaziolie

$$\frac{x^2}{k+2} + \frac{y^2}{3-k} = 1$$

determinare il valore di *k* tale che l'equazione:

- a) rappresenti una ellisse
- b) rappresenti una ellisse con i fuochi sull'asse *x*
- c) rappresenti una ellisse con i fuochi sull'asse x e abbia eccentricità $e=\frac{\sqrt{2}}{2}$
- d) passi per il punto $P\left(0; \frac{5}{3}\right)$

$$a) - 2 < k < 3$$

b)
$$\frac{1}{2} < k < 3$$

c)
$$k = \frac{4}{3}$$

$$d) k = \frac{2}{9}$$

$$kx^2 + 16y^2 = 49$$
:

- a) abbia i fuochi sull'asse x
- b) abbia i fuochi sull'asse y
- c) abbia distanza focale uguale a 2 $\sqrt{\frac{7}{6}}$
- d) degeneri in una circonferenza

a)
$$0 < k < 16$$

b)
$$k > 16$$

c)
$$k = \frac{336}{29}$$

d) $k = 16$

Considerato il fascio di ellissi
$$\frac{(x+k)^2}{12+2k} + \frac{(y-4)^2}{25} = 1$$
 determinare il parametro k in modo che l'equazione

- a) una ellisse con vertice nel punto Q(-1; -1)
- b) una ellisse con $a = \frac{\sqrt{11}}{11}$
- c) una iperbole

rappresenti:

d) una circonferenza

$$a) k = 1$$

$$b) \ k = \frac{\sqrt{11}}{22} - 6$$

d)
$$k = \frac{13}{2}$$

Considerato il fascio di ellissi
$$\frac{x^2}{k} + \frac{3y^2}{k+1} = 1$$
 determinare i valori di k per cui tali ellissi creano sull'asse x ed y una corda di lunghezza 10

Data l'ellisse di equazione $x^2 + 16y^2 = 16$, determina per quali valori di k le rette del fascio di equazione y = 2x + k intersecano l'ellisse

asse
$$x k = 25$$

asse
$$y k = 74$$

 $\sqrt{65} \le k \le \sqrt{65}$

Dopo aver trovato i valori di <i>k</i> affinché l'equazione				
$\frac{x^2}{4k+4} + \frac{y^2}{3+k} = 1$ rappresenti un'ellisse, determina				
quello corrispondente all'ellisse passante per il punto				
$(2;\sqrt{2})$				

$$k > -1$$
$$k = 1$$

$$\frac{x^2}{2k-1} + \frac{y^2}{5k+2} = 1$$
:

- a) sia un'ellisse con i fuochi sull'asse delle ordinate
- b) abbia un fuoco di coordinate (0; 3)
- c) abbia un vertice di coordinate (-3; 0)
- d) abbia eccentricità $\sqrt{\frac{6}{7}}$

$$a) k > \frac{1}{2}$$

- b) k = 2
- c) k = 5
- $d)\,k=1$

Considera l'equazione $(k + 2)x^2 - ky^2 = 1$ e trova per quali valori di k si ha:

a) un'ellisse

117

- b) una circonferenza
- c) un'ellisse con i fuochi sull'asse x e un'ellisse con i fuochi sull'asse y
- d) un'ellisse con un fuoco di coordinate (1; 0).

Posto $k=-\frac{1}{4}$, trova i vertici del quadrato inscritto nell'ellisse

a)
$$-2 < k < 0$$

b) $k = -1$

c)
$$-2 < k < -1$$
 $-1 < k < 0$
d) $k = -\sqrt{2}$

$$\left(\frac{\sqrt{2}}{2}; \pm \frac{\sqrt{2}}{2}\right) \quad \left(-\frac{\sqrt{2}}{2}; \pm \frac{\sqrt{2}}{2}\right)$$

Dopo aver scritto l'equazione dell'ellisse passante per i punti di coordinate
$$(2\sqrt{3}; -1)$$
 e $(\sqrt{15}; \frac{1}{2})$, calcola la lunghezza della corda che la retta di equazione $y=1$ stacca su di essa

 $4\sqrt{3}$

Sull'ellisse
$$9x^2 + 25y^2 = 225$$
, trova i punti la cui distanza dal fuoco di destra è 4 volte la distanza dal fuoco di sinistra

$$\left(-\frac{15}{4}; \pm \frac{3}{4}\sqrt{7}\right)$$

120	Scrivi l'equazione dell'ellisse simmetrica rispetto agli assi coordinati i cui fuochi si trovano sull'asse x , passa per il punto $P(-4; \sqrt{21})$ ed ha eccentricità $e = \frac{3}{4}$	$\frac{x^2}{64} + \frac{y^2}{28} = 1$
121	Scrivere l'equazione dell'ellisse che ha gli estremi dell'asse maggiore nei punti (± 4 ; 0) e l'eccentricità uguale a $\frac{\sqrt{3}}{2}$	$\frac{x^2}{16} + \frac{y^2}{4} = 1$
122	Un'ellisse con centro in $O(0;0)$ e con i fuochi sull'asse delle x passa per il punto $P\left(1;\frac{3}{2}\right)$ e ha eccentricità uguale $e=\frac{1}{2}$ Trovare l'equazione dell'ellisse e la distanza del fuoco di ascissa positiva della tangente all'ellisse in P	$3x^2 + 4y^2 = 12$ $d = \frac{3\sqrt{5}}{5}$
123	Siano A e B i punti di intersezione dell'ellisse di equazione $x^2 + 4y^2 - 4 = 0$ con la retta di equazione $y = 2x + 1$. Detto A_1 il vertice dell'ellisse di ascissa positiva, calcolare la misura dell'area del triangolo ABA_1	$A(0:1)$ $B\left(-\frac{16}{17}; -\frac{15}{17}\right)$ $area = \frac{40}{17}$
124	Dal punto (-4; 2) condurre le tangenti all'ellisse $\frac{x^2}{9}$ + $y^2 = 1$	$y - 2 = \frac{-8 \pm \sqrt{43}}{7}(x+4)$
125	Trovare per quali valori di k la retta $y = x + k$ risulta tangente all'ellisse $2x^2 + y^2 = 2$	$k = \pm \sqrt{3}$
126	Trovare per quali valori b^2 l'ellisse $b^2x^2 + y^2 = b^2$ risulta tangente alla retta $x - 2y = 2$	$b^2 = \frac{3}{4}$

127	Trovare per quali valori di a^2 l'ellisse $\frac{x^2}{a^2} + y^2 = 1$ è tangente alla retta $3y + 2x = 6$	$a^2 = \frac{27}{4}$
128	Determina la traiettoria del punto mobile P la cui distanza dalla retta $x=9$ è sempre il triplo della distanza dal punto $A(3;0)$	$\frac{x^2}{16} + \frac{y^2}{25} = 1$
129	Determina i punti dell'ellisse $\frac{x^2}{100} + \frac{y^2}{36} = 1$ la cui distanza dal fuoco di ascissa positiva è 14	$(-5; \pm 3\sqrt{3})$
130	Determina le coordinate dei punti di intersezione dell'ellisse, con i fuochi sull'asse x , i cui assi misurano $2\sqrt{52}$ e $2\sqrt{13}$, con la retta di equazione $x-2y+2=0$	A(4; 3) B(-6; -2)
131	Determina le coordinate dei punti di intersezione dell'ellisse di assi 10 e 8 con la retta di equazione $3x + 5y - 15 = 0$	$A\left(-\frac{7}{5}; \frac{96}{25}\right)$ $B(5; 0)$
132	L'ellisse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ha eccentricità $\frac{4}{5}$ e asse minore $2b = 12$. Determina l'equazione della curva e trova le coordinate dei punti P e Q di intersezione tra la curva e la retta $2x - 5y + 2 = 0$	$\frac{x^2}{100} + \frac{y^2}{36} = 1$ $P\left(8; \frac{18}{5}\right) Q\left(-\frac{112}{13}; -\frac{198}{65}\right)$
133	Date l'ellisse $9x^2 + 25y^2 = 225$ e la retta $y = -\frac{x}{2}$, determina la misura della corda intercettata sulla retta dall'ellisse	$30\sqrt{\frac{5}{61}}$

134	Nel fascio di rette parallele all'asse delle ascisse, determina le rette sulle quali l'ellisse di equazione $\frac{x^2}{2} + \frac{y^2}{12} = 1 \text{ stacca una corda di lunghezza } \sqrt{2}$	$y = \pm 3$
135	Data l'ellisse $x^2 + 4y^2 = 4$, calcola l'area del quadrato che ha i vertici sui punti di intersezione dell'ellisse con le bisettrici dei quadranti	$area = \frac{16}{5}$
136	Data l'ellisse di equazione $x^2 - 6x + 8y^2 - 136y + 569 = 0$, determinare le rette tangenti ai suoi punti di ordinate 7 e 9. Se esse formano un triangolo, riconoscere il tipo e calcolarne perimetro e area	$x + y = 16$ $y - x = 10$ $y = 7$ $rettangolo isoscele$ $2p = 12 (1 + \sqrt{2})$ $area = 36$
137	Trova la misura della corda che risulta bisettrice dell'angolo formato dagli assi dell'ellisse $x^2 + 2y^2 = 18$	$4\sqrt{3}$
138	Scrivi l'equazione dei lati del rettangolo di perimetro 28 inscritto nell'ellisse di equazione $\frac{x^2}{18} + \frac{y^2}{32} = 1$	$x = \pm 3 y = \pm 4$ $x = \pm \frac{51}{25} y = \pm \frac{124}{25}$

139	Calcola la misura della corda dell'ellisse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ che giace su una diagonale del rettangolo costruito sugli assi dell'ellisse	$\sqrt{2(a^2+b^2)}$
140	Data l'ellisse di equazione $x^2 + 3y^2 = 3$, considera la retta parallela all'asse y e passante per il suo fuoco di ascissa positiva. Indicati con A e B i punti in cui tale retta incontra l'ellisse e con P e Q i vertici appartenenti all'asse delle ascisse, calcola l'area dei triangoli ABP e ABQ	$area = \frac{3 - \sqrt{6}}{3}$ $area = \frac{3 + \sqrt{6}}{3}$
141	Scrivi l'equazione dell'ellisse avente un fuoco nel punto $F(2;0)$ e passante per $P\left(-\frac{3}{\sqrt{5}};2\right)$. Indicati con A e B i punti di intersezione di tale ellisse con la retta di equazione $y-x-\sqrt{5}=0$, calcola l'area del triangolo ABO essendo O l'origine degli assi	$area = \frac{45}{14}$
142	Un'ellisse con i fuochi sull'asse x delle ascisse ha eccentricità $\frac{\sqrt{3}}{2}$ e passa per il punto (2; 3). Determina l'area racchiusa dall'ellisse	$area=20\pi$
143	Data l'ellisse di equazione $\frac{x^2}{4} + \frac{y^2}{9} = 1$ verificare che la retta $3x + 2(\sqrt{3} - 2)y - 6\sqrt{3} + 6 = 0$ è secante ad essa e determinare i punti di intersezione A e B , con A di ascissa di minore. Trovare infine l'area del triangolo OAB	$A\left(1; -\frac{3}{2}\sqrt{3}\right) B\left(\sqrt{3}; \frac{3}{2}\right)$ $area = 3$

144	Considerato il rettangolo di estremi $P(5;1)$, $Q(-5;1)$, $S(5;5)$ e $T(-5;5)$ determinare l'equazione dell'ellisse inscritta e l'area del rombo ottenuto congiungendo i punti di tangenza	$\frac{x^2}{25} + \frac{(y-3)^2}{4} = 1$ $area = 20$
145	Scrivere l'equazione dell'ellisse avente come assi di simmetria i segmenti di estremi: $A(3; -4)$, $B(3; 8)$, $C(-2; 2)$ e $D(8; 2)$. Determinare poi l'equazione della parabola passante per C e con vertice in A . Determina infine la tangente ad essa nel punto A	$\frac{(x-3)^2}{25} + \frac{(y-2)^2}{36} = 1$ $y = \frac{1}{25}(6x^2 - 36x - 46)$ $y = -4$
146	Considerata l'ellisse $\frac{x^2}{4} + \frac{y^2}{36} = 1$, determinare l'equazione di un'altra ellisse avente lo stesso centro di simmetria, il semiasse minore $a = \sqrt{17}$ e un fuoco nel punto $F(0;5)$.	$\frac{x^2}{17} + \frac{y^2}{42} = 1$
147	Determinare le misure degli assi di un'ellisse la cui area è $\frac{1}{4}\pi$ e che passa per il punto $P\left(1;\frac{1}{2}\right)$	$a = \sqrt{\frac{4 \pm \sqrt{15}}{2}} b = \sqrt{\frac{4 \mp \sqrt{15}}{8}}$
148	È data l'ellisse di equazione $\frac{x^2}{25} + \frac{y^2}{9} = 1$ si trovi l'equazione della parabola avente per asse l'asse y , che incontri l'ellisse nel suo punto d'intersezione con il semiasse negativo delle y e che passi per i fuochi F_1 e F_2 dell'ellisse	$y = \frac{3}{16}x^2 - 3$

149	 Si consideri la curva di equazione ^{x²}/_m + ^{y²}/_{3-m} = 1 con m ∈ R a) Stabilire per quali valori m l'equazione rappresenta un'ellisse, precisando per quale valore di m si ha una circonferenza b) Per quali valori di m l'ellisse ha i fuochi sull'asse y? c) Determinare m in modo che un fuoco sia il punto F(0,1) 	a) $0 < m < 3$ $m = \frac{3}{2}$ b) $0 < m < \frac{2}{3}$ c) $m = 1$
150	Dati i punti $A(1;2)$, $B(1;1)$ e $C(4;1)$, determinare tutti i punti P del piano tali che $PA + PB = PB + PC = \sqrt{11}$	$P\left(\frac{236\pm5\sqrt{22}}{101}; \frac{3(34\pm5\sqrt{22})}{101}\right)$
151	Determina l'equazione del luogo dei punti $P(x; y)$ del piano cartesiano che soddisfano la relazione $5PQ = PH$, essendo $Q(1; 0)$ e PH la distanza di P dalla retta parallela all'asse delle ordinate che passa per il punto $S(25; 1)$	$24 x^2 + 25 y^2 = 600$
152	Nel fascio di ellissi di equazione $\frac{x^2}{b^2+1} + \frac{y^2}{b^2} = 1$, determina quella che passa per il punto $P\left(-\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$.	$\frac{2x^2}{\sqrt{3}+2} + \frac{2y^2}{\sqrt{3}} = 1$

Inscrivi poi nell'ellisse un rettangolo con un lato

appartenente alla retta di equazione x = 1 e calcolane

l'area

 $area = 2\sqrt{6(2-\sqrt{3})}$

153

154

155

prob	lemi d	li riep	ilogo	più im	pegna [.]	tivi
P. 0.0				P. G	.p = 9	

4

$$y = \sqrt{3} x \pm \frac{\sqrt{14}}{2}$$

$$area = \frac{2\sqrt{21}}{3}$$

Dopo aver determinato l'equazione dell'ellisse con centro nell'origine degli assi e tangente alle rette di equazioni y=3 e x=-6, inscrivi in essa un rettangolo che abbia la base doppia dell'altezza. Calcola le coordinate dei vertici di tale rettangolo

$$\frac{x^2}{36} + \frac{y^2}{9} = 1$$

$$\left(3\sqrt{2}; \frac{3\sqrt{2}}{2}\right)$$

$$\left(3\sqrt{2}; -\frac{3\sqrt{2}}{2}\right)$$

$$\left(-3\sqrt{2}; \frac{3\sqrt{2}}{2}\right)$$

$$\left(-3\sqrt{2}; -\frac{3\sqrt{2}}{2}\right)$$

Dato il fascio di ellissi $5x^2 + 2kx + 20y^2 + 32ky = 180 - 13k^2$, determinare i valori di k tali che le ellissi:

- a) $k > \frac{15}{4}$ b) k > 30c) $-6\sqrt{\frac{5}{13}} < k < 6\sqrt{\frac{5}{13}}$
- ascisse
 b) siano completamente a sinistra dell'asse delle

a) siano completamente al di sotto dell'asse delle

- b) siano completamente a sinistra dell'asse delle ordinate
- c) abbiano l'origine come punto interno

Scrivi l'equazione dell'ellisse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 che passa per i punti $A\left(4;\frac{6}{5}\right)$ e $B\left(-3;-\frac{8}{5}\right)$. Trova le coordinate dei punti di intersezione tra l'ellisse e la retta perpendicolare ad AB condotta per il centro della curva

$$\frac{x^2}{25} + \frac{y^2}{4} = 1$$
$$\left(\frac{20}{\sqrt{641}}; -\frac{50}{\sqrt{641}}\right)$$
$$\left(-\frac{20}{\sqrt{641}}; \frac{50}{\sqrt{641}}\right)$$

Ellisse

157	Dopo aver determinato l'equazione dell'ellisse con centro nell'origine degli assi cartesiani che ha un vertice in $V(-2;0)$ e un fuoco in $F(0;\sqrt{5})$; determina l'equazione della parabola che ha vertice in F e passa per V . Scrivi le equazioni delle rette tangenti alla parabola nei suoi punti di intersezione con l'asse x . Calcola, infine, l'area del triangolo individuato da tali tangenti e dall'asse x	$\frac{x^2}{4} + \frac{y^2}{9} = 1$ $y = -\frac{\sqrt{5}}{4}x^2 + \sqrt{5}$ $y = \sqrt{5}(x - 2)$ $y = -\sqrt{5}(x + 2)$ $area = 4\sqrt{5}$
158	Individua i punti P dell'ellisse di equazione $\frac{x^2}{25} + \frac{y^2}{9} = 1$ tali che l'angolo $F_1 \hat{P} F_2$ sia retto, essendo F_1, F_2 i fuochi dell'ellisse	$\left(\pm\frac{5\sqrt{7}}{4};\pm\frac{9}{4}\right)$ $\left(\mp\frac{5\sqrt{7}}{4};\pm\frac{9}{4}\right)$
159	Determina i parametri a e b della dilatazione di equazioni $\begin{cases} x' = ax \\ y' = by \end{cases}$, con a , b appartenenti a R^+ , affinché la circonferenza con centro nell'origine e raggio 1 sia trasformata nell'ellisse di equazione: $\frac{x^2}{64} + \frac{y^2}{36} = 1$	a = 8 $b = 6$
160	Scrivi le equazioni di una dilatazione che trasforma la circonferenza di equazione $x^2 + y^2 = 16$ nell'ellisse di equazione $\frac{x^2}{16} + \frac{y^2}{4} = 1$	$\begin{cases} x' = x \\ y' = \frac{y}{2} \end{cases}$

 $\frac{25}{36}x^2 + \frac{y^2}{4} - \frac{25}{3}x + 24 = 0$

completa la tabella 🕦							
	equazione	semiasse maggiore	semiasse minore	eccentricità	centro di simmetria		
161	$100x^2 + y^2 + 1600x - 20y = -6499$						
162		$\frac{1}{2}$	2 5		$C\left(\frac{10}{9}; \frac{4}{9}\right)$		
163			<u>5</u> 3	$\frac{2\sqrt{2}}{3}$	$C\left(\frac{1}{4}; -\frac{8}{9}\right)$		
164	$x^2 + y^2 - \frac{20}{7}x + \frac{2}{7}y = -\frac{860}{441}$						
165		$\frac{3}{2}$		$\frac{4\sqrt{2}}{9}$	$C\left(\frac{7}{10}; \frac{2}{7}\right)$		
166	$x^2 + 4y^2 + \frac{8}{9}x + 48y + \frac{16}{81} = -143$						
				1/2	/8 1\		

soluzioni									
	equazione	semiasse maggiore	semiasse minore	eccentricità	centro di simmetria				
161		1	$\frac{1}{10}$	$\frac{3\sqrt{11}}{10}$	C(-8; 10)				
162	$\frac{25}{4} \left(x - \frac{10}{9} \right)^2 + 4 \left(y - \frac{4}{9} \right)^2 = 1$			3 5					
163	$\left(x - \frac{1}{4}\right)^2 + 9\left(y + \frac{8}{9}\right)^2 = 25$	5							
164		$\frac{1}{3}$	$\frac{1}{3}$	0	$C\left(\frac{10}{7}; -\frac{1}{7}\right)$				
165	$\frac{9}{49}\left(x - \frac{7}{10}\right)^2 + \frac{1}{9}\left(y - \frac{2}{7}\right)^2 = \frac{1}{4}$		$\frac{7}{6}$						
166		1	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$C\left(-\frac{4}{9};-6\right)$				
167	$\left(x - \frac{8}{7}\right)^2 + \left(2y + \frac{2}{3}\right)^2 = 16$		2						
168		2	6 5	4 5	C(6; 0)				

167

168