

risolvi i seguenti problemi più impegnativi		
1	Determinare l'equazione dell'iperbole equilatera, riferita agli asintoti, che è tangente alla circonferenza $x^2 + y^2 = 1$	$xy = \pm \frac{1}{2}$
2	Determinare l'equazione della parabola, con asse parallelo all'asse y , che ha il vertice coincidente con il centro della circonferenza di equazione $x^2 + y^2 - 6x + 4y = 0$ ed è tale che l'asse delle ascisse intercetta su di essa una corda di lunghezza 6	$y = \frac{2}{9}x^2 - \frac{4}{3}x$
3	Data l'iperbole di equazione $y = \frac{2x+1}{hx-k}$, determinare i valori dei parametri h e k sapendo che uno dei suoi asintoti è la retta $x = 3$ e che inoltre passa per il centro dell'ellisse di equazione $\frac{(x+6)^2}{64} + \frac{(y+2)^2}{8} = 1$	$y = \frac{36x + 18}{-11x + 33}$
4	Determinare i punti di intersezione dell'iperbole di equazione $x^2-y^2=25$ con la circonferenza avente il centro nell'origine e diametro uguale alla semi distanza focale dell'iperbole	$\left(\pm \frac{5\sqrt{6}}{2}; \frac{5\sqrt{2}}{2}\right)$ $\left(\pm \frac{5\sqrt{6}}{2}; -\frac{5\sqrt{2}}{2}\right)$
5	È data la parabola $y=(x-3)^2$ Scrivere l'equazione della parabola simmetrica della data rispetto all'asse x . Scrivere l'equazione della circonferenza avente il centro nel vertice comune delle due parabole il cui raggio misura $\sqrt{20}$. Determinare le coordinate dei punti d'intersezione delle tre curve e le equazioni delle tangenti alle curve nei punti trovati	$y = -x^{2} + 6x - 9$ $x^{2} + y^{2} - 6x - 11 = 0$ $A(1; 4) B(5; 4)$ $C(1; -4) D(5; -4)$ $tangenti in A:$ $y = -4x + 8$ $2y = x + 7$

6	Una circonferenza, situata nel primo quadrante, è tangente agli assi coordinati e il suo raggio misura 2. Una parabola, con asse parallelo all'asse x , ha il vertice nel punto $(-1; 2)$ e passa per il punto $(3; 0)$. Scrivere le equazioni delle due curve. Determinare una traslazione di assi che abbia la nuova origine nel centro della circonferenza e scrivere le equazioni delle due curve riferite ai nuovi assi. Determinare le coordinate dei punti d'intersezione delle due curve, nei due sistemi di riferimento	$x^{2} + y^{2} - 4x - 4y + 4 = 0$ $x = y^{2} - 4y + 3$ $X^{2} + Y^{2} = 4$ $X = Y^{2} - 3$
7	Scrivere l'equazione della circonferenza appartenente al primo quadrante, tangente agli assi coordinati, di raggio misura 3. Scrivere poi, l'equazione della parabola, con asse parallelo all'asse x , con vertice nel punto $(-4;\ 3)$ e passante per il punto $(-3;\ 4)$. Determinare la traslazione di assi che abbia la nuova origine nel centro della circonferenza e scrivere le equazioni delle due curve riferite ai nuovi assi. Determinare le coordinate dei punti d'intersezione delle due curve, nei due sistemi di riferimento	$x^{2} + y^{2} - 6x - 6y + 9 = 0$ $x = y^{2} - 6y + 5$ $X^{2} + Y^{2} = 9$ $X = Y^{2} - 7$
8	Scrivere l'equazione della parabola simmetrica rispetto all'asse x , della parabola di equazione $y=(x-2)^2$. Determinare l'equazione della circonferenza avente il centro nel vertice comune delle due parabole e raggio $\sqrt{20}$; scrivere le coordinate dei punti d'intersezione delle tre curve e le equazioni delle tangenti alle curve nei punti trovati	$y = -x^{2} + 4x - 4$ $x^{2} + y^{2} - 4x - 16 = 0$ $A(0; 4) B(4; 4)$ $C(0; -4) D(4; -4)$ $tangenti in A:$ $y = -4x + 4; \ 2y = x + 8$
9	Una circonferenza, situata nel primo quadrante, è tangente agli assi coordinati e il suo raggio misura 3. Una parabola, con asse parallelo all'asse x , ha il vertice nel punto $(-4;3)$ e passa per il punto $(-3;4)$. Scrivere le equazioni delle due curve. Determinare una traslazione di assi che abbia la nuova origine nel centro della circonferenza e scrivere le equazioni delle due curve riferite ai nuovi assi. Determinare le coordinate dei punti d'intersezione delle due curve, nei due sistemi di riferimento	$x^{2} + y^{2} - 6x - 6y + 9 = 0$ $x = y^{2} - 6y + 5$ $\begin{cases} x = X + 3 \\ y = Y + 3 \end{cases}$ $X^{2} + Y^{2} = 9$ $X = Y^{2} - 7$ $A(1; 3 + \sqrt{5}) B(1; 3 - \sqrt{5})$ $C(4; 3 - 2\sqrt{2})$ $D(4; 3 + 2\sqrt{2})$ $A'(-2; \sqrt{5}) B'(-2; -\sqrt{5})$ $C'(1; -2\sqrt{2}) D'(1; 2\sqrt{2})$

10	Date la parabola e la retta di equazioni $9y = x^2 + 6x - 54$ e $y = 2x - 9$, determinare le coordinate dei loro punti A e B di intersezione. Verificare poi che il triangolo che ha come vertici l'origine degli assi cartesiani e i punti A e B è rettangolo e determinare l'equazione della circonferenza circoscritta a questo triangolo	$(3; -3) (9; 9)$ $x^2 + y^2 - 12x - 6y = 0$
11	Scrivere le equazioni delle due curve di equazioni $xy = k$ e $y = ax^2 + b$ sapendo che passano per il punto $P(2; 4)$ e che la tangente alla parabola in questo punto ha coefficiente angolare -2 . Calcolare le coordinate dei punti comuni e verificare che le due curve sono tangenti	$xy = 8$ $y = -\frac{1}{2}x^{2} + 6$ $(-4; -2)$
12	 Data l'iperbole equilatera di equazione xy = 1, determinare: a) L'equazione della retta r tangente all'iperbole nel vertice V del I quadrante. b) L'equazione x = ay² + b della parabola tangente in V all'iperbole. c) Le coordinate dell'ulteriore intersezione P delle due curve e l'equazione della retta t, tangente in P all'iperbole. d) La misura dell'area del triangolo VPM, dove M è il punto di intersezione delle rette r, t 	a) $r: x + y - 2 = 0$ b) $x = -\frac{1}{2}y^2 + \frac{3}{2}$ c) $P\left(-\frac{1}{2}; -2\right)$ t: 4x + y + 4 = 0 d) $M(-2; 4)$ are $a = \frac{27}{4}$
13	Scrivere le equazioni delle due curve di equazioni $xy = k$ e $y = ax^2 + b$ sapendo che passano per il punto $P(1; 2)$ e che la tangente alla parabola in questo punto ha coefficiente angolare -2 . Calcolare le coordinate dei punti comuni e verificare che le due curve sono tangenti	$xy = 2$ $y = -x^2 + 3$ $(-2; -1)$
14	Si consideri la circonferenza di centro $C(-3;1)$ e raggio 3. Determinare una retta passante per l'origine degli assi che stacchi sulla circonferenza una corda di estremi A e B con ordinata minore o uguale a 0 e tale che sia soddisfatta la relazione $AB^2 + CH^2 = k$, $k \in \mathbb{R}$, dove H è il punto medio di AB	2 soluzioni per $k < 9$ 1 soluzione per $9 \le k \le 33$ nessuna soluzione per $k > 33$

15	Determinare i punti d'intersezione dell'ellisse di equazione $\frac{833}{100}x^2 + y^2 = 81 \text{ e dell'iperbole di equazione}$ $\frac{637}{20}x^2 - y^2 = 1 \text{ . Che angolo formano le rette congiungenti le coppie di punti opposti tra quelli trovati?}$	$P_{1,2}\left(\pm\frac{10}{7};\pm8\right)$ $P_{3,4}\left(\pm\frac{10}{7};\mp8\right)$ $\alpha = arctg\left(\frac{280}{759}\right) \approx 20.25^{\circ}$
16	Tra tutte le iperboli aventi come asintoti le rette $y=\pm\frac{3}{4}x$, trovare quelle tangenti all'ellisse di equazione $\frac{x^2}{4}+\frac{y^2}{9}=1$	$x^{2} - \frac{16}{9}y^{2} = 4$ $x^{2} - \frac{16}{9}y^{2} = -16$
17	Determinare la parabola passante per il punto $P(-1; -2)$ e per i punti d'intersezione della circonferenza di equazione $x^2 + y^2 + \frac{51}{10}x + \frac{167}{20}y + 8 = 0$ con la retta $7x + 2y = -5$	$y = -(3x^2 + 2x + 1)$
18	Determinare l'area della parte di piano delimitata dai grafici delle parabole di equazioni $y=-\left(x^2+\frac{5}{2}x\right)$ e $y=-\left(4x^2+\frac{17}{2}x\right)$	area = 4
19	Determinare i punti d'intersezione della circonferenza Γ : $x^2 + y^2 - \frac{x}{5} - 2y = \frac{31}{25}$ e della parabola Π : $y = -\frac{10x^2 + 34x + 7}{21}$; si calcoli quindi l'area della parte di piano delimitata dai grafici delle due sezioni coniche	$A\left(-\frac{7}{5};1\right), B\left(\frac{1}{10}; -\frac{1}{2}\right)$ $area = \frac{9\pi}{16} - \frac{83}{140}$
	Trovare l'equazione della circonferenza di area minima	

21	Trovare l'equazione della funzione omografica avente come asintoti le rette direttrici delle parabole $y=x^2-\frac{21}{4}x+\frac{143}{20}$ e $x=y^2+\frac{8}{15}y+\frac{197}{75}$ e passante per il loro unico punto d'intersezione	$y = \frac{27x + 719}{80(36x - 83)}$
22	Trovare l'area del triangolo delimitato dall'asse delle ascisse e dalle rette tangenti all'ellisse di equazione $\frac{9}{4}x^2 + y^2 - 2x - \frac{4}{3}y - \frac{1}{9} = 0 \text{nei suoi punti d'intersezione}$ con la parabola di equazione $y = \frac{27}{5}x^2 - \left(\frac{3\sqrt{11}}{22} + \frac{27}{5}\right)x + \frac{5\sqrt{11}}{33}$ di ordinata maggiore	$area = \frac{44}{45} + \frac{103\sqrt{11}}{135}$
23	Calcolare l'area del quadrilatero circoscritto alla circonferenza $\Gamma: x^2+y^2=2$ individua-to dalle quattro tangenti comuni a Γ e alla parabola $y=\frac{9}{17}x^2+\frac{40}{17}x+\frac{225}{68}$	$area = \frac{40}{\sqrt{17}}$
24	Trovare l'area del triangolo avente come vertici i punti d'intersezione della funzione omografica $y=\frac{16x+13}{4x+4}$ e della parabola $y=x^2+2x+\frac{13}{4}$	$area = \frac{5}{4}$
25	Trovare l'area della figura costituita dalle circonferenze sovrapposte aventi equazioni $x^2 + y^2 + 6x - \left(4\sqrt{3} + 22\right)y + 28\sqrt{3} + 110 = 0 \text{ e}$ $x^2 + y^2 + 6x + \left(4\sqrt{3} - 14\right)y - 28\sqrt{3} = -54$	$area = \frac{4\pi}{3}(4+\sqrt{3}) + 8(1+\sqrt{3})$
26	Trovare area e perimetro del quadrilatero i cui vertici sono i punti d'intersezione della parabola di equazione $y=2x^2-1$ e dell'iperbole di equazione $16x^2-4y^2=-1$. Di che quadrilatero si tratta?	$area = \sqrt{26 + \frac{13\sqrt{3}}{2}}$ $2p = \sqrt{2}\left(\sqrt{4 + \sqrt{3}} + \sqrt{30 - \sqrt{3}}\right)$ $trapezio isoscele$

27	Trovare le rette tangenti all'ellisse di equazione $x^2 + 9y^2 - x + 45y + 34 = 0$ e alla parabola $y = \frac{x^2}{3} + \frac{37}{9}x + \frac{250}{27}$	$y = x + 2, y = -\frac{x + 37}{9}$ $y = \frac{76 - 5\sqrt{145}}{9}x + \frac{65\sqrt{145} - 691}{18}$ $y = \frac{76 + 5\sqrt{145}}{9}x - \frac{65\sqrt{145} + 691}{18}$
28	Calcolare l'area del segmento parabolico staccato sulla parabola $y=\frac{x^2}{11}-\frac{16x+23}{33}$ dalla ret-ta congiungente i punti d'intersezione di detta parabola con l'iperbole $y=-\frac{38x+18}{33x}$	$area = \frac{121}{162}$
29	Trovare l'equazione dell'unica parabola ad asse verticale passante per il punto $P\left(\frac{23}{4};-4\right)$ e per i punti in cui le tangenti all'ellisse $E\colon 8x^2+5y^2-8x-16y-93=0$ condotte da P intersecano E	$y = -\frac{22}{23}x^2 + \frac{245}{46}x - 3$
30	Scrivi le equazioni di due circonferenze che hanno i centri sugli assi cartesiani e sulla retta di equazione $2x + 3y - 12 = 0$, sapendo che si incontrano nel punto $A(2;0)$. Trova inoltre l'equazione di una parabola, con asse parallelo all'asse y, che passa per il centro della circonferenza minore ed è tangente in A alla retta che congiunge i punti comuni alle due circonferenze	$x^{2} + y^{2} - 12x + 20 = 0$ $x^{2} + y^{2} - 8y - 4 = 0$ $8y = -3x^{2} + 24x - 36$
31	Data la circonferenza $x^2 + y^2 - 4x - 4\sqrt{3}y + 12 = 0$, determina le intersezioni A, A' con la retta $y = \sqrt{3}x$, con $x_A < x_{A'}$ e B , B' con la retta $y = -\sqrt{3}x + 4\sqrt{3}$, con $x_B < x_{B'}$. Determina inoltre la lunghezza della corda AB	$A(1; \sqrt{3}), B(3; \sqrt{3})$ $AB = 2$
32	Scrivi l'equazione dell'ellisse, con i fuochi nei punti $F(2;2+\sqrt{5}), F'(2;2-\sqrt{5})$, sapendo che è tangente all'asse y. Determinare poi l'equazione della semiellisse posta nel semipiano delle $y \geq 2$ e determinare il simmetrico della semiellisse rispetto al punto $(0;2)$	$9x^{2} + 4y^{2} - 36x - 16y + 16 = 0$ semiellisse: $y = 2 + \frac{3}{2}\sqrt{4x - x^{2}}$ $y = 2 - \frac{3}{2}\sqrt{-4x - x^{2}}$

Geometria Analitica Problemi in cui sono presenti più curve

33	Della parabola di equazione $y = \frac{1}{4}x^2$, determina la simmetrica rispetto alla retta $y = x$. Nella regione limitata dalla prima e dalla seconda parabola, inscrivi un rettangolo di area $2\sqrt{2}$, sapendo che due lati opposti sono paralleli alla bisettrice del primo e terzo quadrante	$x = \frac{1}{4}y^2$ 4 oppure $2(\sqrt{5} - 1)$
34	Studiare la natura dell'insieme di coniche di equazione $x^2 + (k-1)y^2 = 3 - k$ al variare di k. Sia ε la conica degenere data dall'unione di due rette; determinare i punti di incontro A e B di tali rette con l'asse x	ellisse per $1 < k < 3$ circonferenza per $k = 2$ iperbole per $k < 1$ $x^2 + y^2 = 1; x = \pm \sqrt{2}$ $A(-\sqrt{2}; 0) B(\sqrt{2}, 0)$
35	Siano date la semiellisse di vertici $O(0;0)$, $A(4;0)$; $V(2;3)$ posta nel semipiano $y \ge 0$, e la semicirconferenza, posta nel semipiano $y \le 0$, di diametro OA e centro C. Calcola l'area della regione finita di piano delimitata dalle due curve	$y = \frac{3}{2}\sqrt{4x - x^2}$ $y = -\sqrt{4x - x^2}$ $area = 5\pi$